Differential radiosensitization in DNA mismatch repair-proficient and -deficient human colon cancer xenografts with 5-iodo-2-pyrimidinone-2'-deoxyribose.
نویسندگان
چکیده
PURPOSE 5-iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a pyrimidinone nucleoside prodrug of 5-iododeoxyuridine (IUdR) under investigation as an orally administered radiosensitizer. We previously reported that the mismatch repair (MMR) proteins (both hMSH2 and hMLH1) impact on the extent (percentage) of IUdR-DNA incorporation and subsequent in vitro IUdR-mediated radiosensitization in human tumor cell lines. In this study, we used oral IPdR to assess in vivo radiosensitization in MMR-proficient (MMR+) and -deficient (MMR-) human colon cancer xenografts. EXPERIMENTAL DESIGN We tested whether oral IPdR treatment (1 g/kg/d for 14 days) can result in differential IUdR incorporation in tumor cell DNA and subsequent radiosensitization after a short course (every day for 4 days) of fractionated radiation therapy, by using athymic nude mice with an isogenic pair of human colon cancer xenografts, HCT116 (MMR-, hMLH1-) and HCT116/3-6 (MMR+, hMLH1+). A tumor regrowth assay was used to assess radiosensitization. Systemic toxicity was assessed by daily body weights and by percentage of IUdR-DNA incorporation in normal bone marrow and intestine. RESULTS After a 14-day once-daily IPdR treatment by gastric gavage, significantly higher IUdR-DNA incorporation was found in HCT116 (MMR-) tumor xenografts compared with HCT116/3-6 (MMR+) tumor xenografts. Using a tumor regrowth assay after the 14-day drug treatment and a 4-day radiation therapy course (days 11-14 of IPdR), we found substantial radiosensitization in both HCT116 and HCT116/3-6 tumor xenografts. However, the sensitizer enhancement ratio (SER) was substantially higher in HCT116 (MMR-) tumor xenografts (1.48 at 2 Gy per fraction, 1.41 at 4 Gy per fraction), compared with HCT116/3-6 (MMR+) tumor xenografts (1.21 at 2 Gy per fraction, 1.20 at 4 Gy per fraction). No substantial systemic toxicity was found in the treatment groups. CONCLUSIONS These results suggest that IPdR-mediated radiosensitization can be an effective in vivo approach to treat "drug-resistant" MMR-deficient tumors as well as MMR-proficient tumors.
منابع مشابه
Preclinical toxicity and efficacy study of a 14-day schedule of oral 5-iodo-2-pyrimidinone-2'-deoxyribose as a prodrug for 5-iodo-2'-deoxyuridine radiosensitization in U251 human glioblastoma xenografts.
In anticipation of an initial clinical Phase I trial in patients with high-grade gliomas of p.o. administered 5-iodo2-pyrimidinone-2'-deoxyribose (IPdR) given daily for 14 days as a prodrug for 5-iodo-2'-deoxyuridine (IUdR)-mediated tumor radiosensitization, we determined the systemic toxicities and the percentage IUdR-DNA incorporation in normal athymic mouse tissues and a human glioblastoma x...
متن کاملSchedule-dependent drug effects of oral 5-iodo-2-pyrimidinone-2'-deoxyribose as an in vivo radiosensitizer in U251 human glioblastoma xenografts.
PURPOSE 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is an oral prodrug of 5-iodo-2'-deoxyuridine (IUdR), an in vitro/in vivo radiosensitizer. IPdR can be rapidly converted to IUdR by a hepatic aldehyde oxidase. Previously, we found that the enzymatic conversion of IPdR to IUdR could be transiently reduced using a once daily (q.d.) treatment schedule and this may affect IPdR-mediated tumor radio...
متن کاملThe interaction between two radiosensitizers: 5-iododeoxyuridine and caffeine.
5-Iododeoxyuridine (IUdR) and caffeine are recognized as potential radiosensitizers with different mechanisms of interaction with ionizing radiation (IR). To assess the interaction of these two types of radiosensitizers, we compared treatment responses to these drugs alone and in combination with IR in two p53-proficient and p53-deficient pairs of human colon cancer cell lines (HCT116 versus HC...
متن کاملmiR-1290 Is a Biomarker in DNA-Mismatch-Repair-Deficient Colon Cancer and Promotes Resistance to 5-Fluorouracil by Directly Targeting hMSH2
5-Fluorouracil (5FU)-based adjuvant therapy is the first-line therapy for treating stage II and III colon cancer after surgery. However, its therapeutic efficacy is limited because of chemoresistance, especially in deficient mismatch repair (dMMR) colon cancer. Here, we first used laser capture microdissection to obtain purified cells from four dMMR and four proficient mismatch repair (pMMR) co...
متن کاملPreclinical evaluation of 5-iodo-2-pyrimidinone-2'-deoxyribose as a prodrug for 5-iodo-2'-deoxyuridine-mediated radiosensitization in mouse and human tissues.
We reported previously that p.o. administered 5-iodo-2-pyrimidinone-2'-deoxyribose (IPdR) was efficiently converted to 5-iodo-2'-deoxyuridine (IUdR) in athymic mice (T. J. Kinsella et al., Cancer Res., 54: 2695-2700, 1994). Here, we further evaluate IPdR metabolism, systemic toxicity, and percentage DNA incorporation in athymic mouse normal tissues and a human colon cancer xenograft (HT29) usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 10 22 شماره
صفحات -
تاریخ انتشار 2004